Convergence Analysis of Spectral Collocation Methods for a Singular Differential Equation

نویسندگان

  • Weizhang Huang
  • Heping Ma
  • Weiwei Sun
چکیده

Solutions of partial differential equations with coordinate singularities often have special behavior near the singularities, which forces them to be smooth. Special treatment for these coordinate singularities is necessary in spectral approximations in order to avoid degradation of accuracy and efficiency. It has been observed numerically in the past that, for a scheme to attain high accuracy, it is unnecessary to impose all the pole conditions, the constraints representing the special solution behavior near singularities. In this paper we provide a theoretical justification for this observation. Specifically, we consider an existing approach, which uses a pole condition as the boundary condition at a singularity and solves the reformulated boundary value problem with a commonly used Gauss–Lobatto collocation scheme. Spectral convergence of the Legendre and Chebyshev collocation methods is obtained for a singular differential equation arising from polar and cylindrical geometries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelet‎-based numerical ‎method‎ ‎‎‎‎for solving fractional integro-differential equation with a weakly singular ‎kernel

This paper describes and compares application of wavelet basis and Block-Pulse functions (BPFs) for solving fractional integro-differential equation (FIDE) with a weakly singular kernel‎. ‎First‎, ‎a collocation method based on Haar wavelets (HW)‎, ‎Legendre wavelet (LW)‎, ‎Chebyshev wavelets (CHW)‎, ‎second kind Chebyshev wavelets (SKCHW)‎, ‎Cos and Sin wavelets (CASW) and BPFs are presented f...

متن کامل

Chebyshev Spectral Collocation Method for Computing Numerical Solution of Telegraph Equation

In this paper, the Chebyshev spectral collocation method(CSCM) for one-dimensional linear hyperbolic telegraph equation is presented. Chebyshev spectral collocation method have become very useful in providing highly accurate solutions to partial differential equations. A straightforward implementation of these methods involves the use of spectral differentiation matrices. Firstly, we transform ...

متن کامل

Supergeometric Convergence of Spectral Collocation Methods for Weakly Singular Volterra and Fredholm Integral Equations with Smooth Solutions

A spectral collocation method is proposed to solve Volterra or Fredholm integral equations with weakly singular kernels and corresponding integro-differential equations by virtue of some identities. For a class of functions that satisfy certain regularity conditions on a bounded domain, we obtain geometric or supergeometric convergence rate for both types of equations. Numerical results confirm...

متن کامل

Application of Tau Approach for Solving Integro-Differential Equations with a Weakly Singular Kernel

In this work, the convection-diffusion integro-differential equation with a weakly singular kernel is discussed. The  Legendre spectral tau method is introduced for finding the unknown function. The proposed method is based on expanding the approximate solution as the elements of a shifted Legendre polynomials. We reduce the problem to a set of algebraic equations by using operational matrices....

متن کامل

Convergence analysis of the sinc collocation method for integro-differential equations system

In this paper, a numerical solution for a system of linear Fredholm integro-differential equations by means of the sinc method is considered. This approximation reduces the system of integro-differential equations to an explicit system of algebraic equations. The exponential convergence rate $O(e^{-k sqrt{N}})$ of the method is proved. The analytical results are illustrated with numerical examp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2003